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Phase ordering from off-critical quenches and the 
measurement of the dynamic exponent X 

A J Bray and J G Kissner 
Department of Theoretical Phyaiu, The University, Manchester M13 9PL. UK 

Received 1 August 1991 

Abstract. The ordering dynamics of a system with non-conserved order parameter 
is considered following a quench into the ordered phare from high temperature. The 
correlation of the ordepparameter field with its initial condition (or, more generally, 
the correlation between the fields at difIerent times) involves the dynamic exponent 
A, a non-trivial exponent associated with the T = 0 fixed point that drives phase 
ordeing. It is shown that A c a n  be detamined from the growth of the mem order 
parameter m(t) in a system which has a small but non-zero mean order parameter 
m g  at t = 0. since m(t)  * moL(t)A where L( t )  - tilz is the characteristic length 
scale at time t .  The role of a weak external field h is also considered for h f 0 the 
growth of m(t)  involves two power-law terms, m(t) * h(ot" + bt* / ' )  (for m g  = 0), 
with z = or 1 for a scalar or vector order parameter, respectively. The results are 
illustrated by the exact solution of the O(n) model at large n for general value of 
m n  and h. 

1. In t roduct ion  

Systems quenched from their high-temperature phase to the low-temperature (or- 
dered) phase exhibit complex nonlinear phenomena. The dynamics of the resulting 
domain growth bas attracted much interest [l], because it obeys dynamic scaling at  
late times, i.e. spatial correlations are time independent when lengths are measured 
in units of the characteristic scale ('domain size') L ( t ) ,  where L ( t )  - t'I2 for a non- 
conserved order parameter 11, 21. 

Much recent work has been devoted to the study of 'two-time' correlations, i.e. the 
correlation between the order-parameter fields at  two different times, which require a 
new, non-trivial exponent for their description [3,4]. For example, Newman and Bray 
[4] have used a 1/n expansion for an n-component vector order parameter to calculate 
the dynamic correlation function 

C( k , t , t') = [S, ( k , t)Si (-k , t')] (1) 
where S i ( k , t )  is a Fourier component of the 'spin field' (we use magnetic language 
throughout) at time t and i indicates a Cartesian component in spin space. The 
brackets in (1) denote an average over an ensemble of initial conditions. C ( k ,  t ,  t ' )  was 
found to depend on the characteristic length scale L ( t )  - t ' la  and a new exponent A,  
which depends on both the spatial dimension d and the spin dimension n. For t > t ' ,  
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where g(z) is a scaling function satisfying g(0) =constant. 
The exponent X has been calculated to first order in 1/n (41, and computer simu- 

lations [5, 61 are in good agreement with the 1/n results. So far, however, no one has 
suggested a method to measure X experimentally. The main difficulty with testing (2) 
directly is that  it is difficult to determine experimentally correlations between fields 
at different times. The purpose of this paper is to show that this problem can be 
overcome by introducing a small initial magnetization m, (we shall use magnetiraiion 
for the mean of the order parameter), i.e. to perform an ‘off-critical’ quench. I t  will 
turn out that  in the scaling regime m(t) is expected to grow like 
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m(t) - m, ~ ( t ) ’ .  (3) 
This result, which relates m(t)  and C ( k ,  t,O), will be derived via a graph expansion. 
For completeness, we will also consider the effect of an external field h ,  which is more 
complicated and leads to a growth law for m(t)  containing two competing power laws. 

A first insight into the problem will be achieved in section 2 by considering the 
fized-length spin model in the limit n i 00. Both m(t)  and C ( k ,  t , t ’ )  (and therefore 
A) can be calculated explicitly in this case. We will also see that the role of h as a 
driving force for the growth of m(t) depends on the spatial dimension of the system: 
for h =constant, the early induced magnetization is the dominating growth mechanism 
if X > 2, whereas h remains important for all t when X < 2. In the appendix we show 
that the differential equation governing phase ordering in a magnetic field is related 
to a standard differential equation, Abel’s equation. 

In section 3 a diagrammatic expansion of the time-dependent Landau-Ginzburg 
equation, which is the soft-spin equivalent of the hard-spin model discussed in section 
2, is used to derive equation (3) more generally: no large-n approximation is required, 
and equation (3) is shown to be correct in general to leading order in m,. We also show 
that the effect of a weak external field can be obtained by rather general arguments. 
For a vector order parameter we find (for m,, = 0) m(t) - h(at + btXIz) to leading 
order in h,  in agreement with the explicit result obtained for the large-n limit. For a 
scalar order parameter m(t)  - h(at112 + bt”lz) is predicted. 

Section 4 concludes with a summary of the results. 

2. The large-n limit 

2.1. The model 
We consider a system of classical fixed-length spins S(z ,  t ) ,  where S has n components 
and Sz = 1. The Hamiltonian with an external field h(z, t )  is given by 

=.!A e 

where p runs through the nearest neighbours of 2; the exchange energy J has been 
set equal to unity. 

In the same spirit as Newman et al [ 5 ] ,  we can derive the equation of motion for 
a non-conserved order parameter: 
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The kinetic coefficient has been scaled to 1 by choice of units of time. The first two 
terms on the right-hand side are obtained by differentiating the Hamiltonian with 
respect t o  S(z). As we are dealing with spins of fixed length, the rate of change of 
a spin has to be perpendicular to it, which is achieved by subtracting the parallel 
component of the force, which is just the third term. We also choose the temperature 
T = 0 for convenience because the phase-ordering process is governed by the stable 
zero-temperature fixed point [4, 71. The only effect of a non-zero temperature is the 
modification of amplitudes [4, 71, which is the same as saying the temperature is an 
irrelevant variable in the renormalization group sense. Of course, T has to be below 
its critical value. 

In the continuum limit equation (5) (with the lattice spacing taken as unity) reads 

(6) -- - VzS(z,t)+h(z,t)-{(V2S(z,t)+h(z,t)).S(z,t))S(z,t) 
at 

where we have neglected higher order spatial derivatives. 

property implies the equation S .  V2S = -(VS)z, which we use to write (6) as 
For n - 03 it is convenient to rescale S -+ S/fi3 h + h/&. The fixed length 

(7) 
1 
n 

-- z , t )  + -{(VS(z,t))2 - h ( l , t ) ’  s(z,t))s(z,t). - V 2 S ( z , t )  + h( 
at 

We now choose h(z,t) to be spatially uniform and pointing into the ( 1 ,  1, . . ., 1) 
direction, i.e. 

h i ( z , t )  = h ( t )  for all i. (8) 

The latter choice is for computational convenience. 

magnetization f i m ,  in the (1, 1 , .  . . , 1)  direction, but no additional correlations, 
Let us further prepare the system at  t = 0 in such a way that there is an average 

[si(=, 011 = mo (9) 

[Si(z,O)Sj(y,O)] = mi + (1  - m i ) s i , , 6 ( 2  -y ) .  (10) 

The square brackets denote the average over an ensemble of initial conditions. The 
correlator has been chosen to ensure that [S(Z,O)~]  = S(z,O)’ = n. We do not 
need to specify higher cumulants because they will not enter the calculation; they are 
irrelevant. Equation (7) and the initial conditions model a system which is initially a t  
temperature T = CO with a bias towards the (1 ,  1, . . ., 1)  direction and is quenched 
t o T = O  at  t = 0. 

In order to solve (7) analytically, we now take the number of components to be 
infinitely large (‘spherical limit’). For n - CO, (7)  is equivalent to 

(11)  -- - V 2 S ( z , t ) + h ( z , t )  + [ ( v S , ( ~ , t ) ) ~  - h(z , t )S , (z , t ) ]S(z , l )  
at 

where S, is an arbitrary component of S. There is no summation over components 
left because the average [. , .] is the same for each component, and the summation has 
been carried out, cancelling the factor 1 /n  in (7) .  
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Equation (11) is conveniently solved in k-space, where the initial conditions read 

[si(k,0)l = f imo6k,o (1'4 

[Si(k,O)S,(-k,O)] = N m i 6 b , 0 + 6 i , j ( l - m i )  (13) 

where N is the number of spins in the system. Equation (11) can be rewritten 

dSi(k't) = ( - P  + ~ C p 2 [ S , ( p , t ) S f ( - p , t ) ]  - h(t)m(t) S i ( k , t ) +  f i h 6 , , ,  (14) 
P 

dt 

where m(t) is the average magnetization per spin for a given component (i.e. the total 
magnetization per spin is J; ;m( t ) ) :  

since [Sf(p, t ) ]  = 0 for p # 0. In all cases momentum sums are over the first Brillouin 
zone. 

2.2. Solution of the differential equation 

The differential equation (14) can be solved explicitly for h(t) = 0, and solved numer- 
ically to any desired accuracy for arbitrary h.  

Integrating (14) gives 

Si(k, O)e-'"eQ(*) for k # 0 

Si (k ,  t )  = (S,(O,O) + J: dt '~h( t ' )e -Q(") )eQ( ' )  for k = 0 (16) 

where Q ( t )  is defined as 

From (16) and (17) it is easy to derive equations for m(t) and G ( t ) :  

Equation (19) can be integrated, with initial condition Q(0) = 0, to obtain 

Note that in this equation Q ( t )  enters only through the function e*('). TO make 
further progress, we treat the cases h(t) = 0 and mo = 0 separately. 
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2.2.1. h ( t )  = 0 .  For vanishing external field h,  (20) simplifies to 

Using (18) (with h = 0), m(t)  is given by 

35 

For t > 1 the exponential function is negligible for wave vectors outside the first 
Brillouin zone and the integration can be extended to infinity with negligible error. 
We can therefore approximate 

with to  = (8n)-'. 
Equation (22) shows that, ultimati I ,  m ( t )  saturates to unity, as expected. The 

scaling regime, which is our main interest [8] ,  is for times (+)"/" >> m i ,  where m(t )  
grows with a power law: 

Clearly a wide scaling regime requires m, << 1. One can also calculate C ( k , t ) ,  the 
correlation function between 0 and t :  

C ( k , t )  = [S , (k , t )S , ( -k ,O)] .  (25) 

It  is given by 

e-*''eQ(I) = ( t / t , )d /4e-k2t  for k # 0 

"0" for k = 0 ( 2 6 )  C(k ,  t )  = 

in the scaling regime. 
The exponent A can be read off from (26): A = d/2, in agreement with previous 

calculations (4, 5, 91 for n = cu. Note that (24) can be rewritten as m(t )  = m,( t / t , )A /2 ,  
which is afirst indication that A can be determined by measuring m(t). We show below 
that this resuit is valid generally, not just in the large-n limit. This resuit assumes, 
of course, that the total magnetization is far from its saturation value, i.e. the system 
is In its scaling regime. Eventually the system leaves the scaling regime and the 
magnetization saturates. 
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2.2.2. h ( t )  # 0. We now turn our attention to the case of non-zero external field. 
Equation (20) can be made more transparent by substituting 

A J Bray and J G Kissner 

f ( t )  = /‘ dt‘h(t‘)e-Q(”) (27) 
0 

with the initial condition f(0) = 0 and f(0) = h(0). From the definition o f f ,  i ( t )  has 
to have the same sign as h( t ) .  We obtain from (20) 

1 

P 

(1 - m,?JF ~ e - ” ’ ”  + (m, +f(t))’  

In the appendix we transform this equation into the well-known Abel differential 
equation, but the approximation required to solve it in the scaling regime can be seen 
on physical grounds by noting from (18) and (27) that 

This is a useful identity because it implies that in the scaling regime, where m(t)’ < 1, 
the final term in the large brackets in (28) can be dropped, to give the simple equation 

P ) . 

Using (29) gives the time dependence of m for m(t) << 1: 

m(t) = (i) d’4 m, + Jo’ dt’h(t’) (i) d / 4  

Again, the momentum sum has been replaced by (23) to display the essence of the 
solution more clearly. 

Note that the two contributions to m(t)  have different physical origins: the first 
comes from the initial magnetization, and is the previously calculated zero-field result; 
the second is due explicitly to the external field. Which term dominates (for t > t o  
but m(t) < 1) depends on the spatial dimension d and the explicit form of h( t ) .  

As a nice application, note that the external field enables us to avoid the initial 
transient behaviour at  early times ( t  < t o ) ,  which is caused by the cut-off of the 
momentum sum, i.e. the approximation (23). This is done in the following way. Take 
h( t )  non-zero only in a time interval [ t l , t z ] ,  t ,  > to. Then from (31) m(t) has the 
very simple form 

fo r t  < 1 ,  

m( t2 ) ( t / t2 )d /4  for t > t, m(t) = 

This result shows that a magnetization induced at later times grows with the same 
power law as the magnetization evolving from an  initial value, but with a different 
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timescale and without the initial cross-over, because the system is already in its scaling 
regime when the magnetization starts to grow. 

Setting h = h, =constant provides an insight into the nature of the interplay 
between growth of magnetization 'by itself' and growth of magnetization driven by 
the external field. Setting m, = 0 in (31): 

(33) 

where the lower cut-off t ,  has been introduced a8 a simple way of taking into account 
the breakdown of (23) at  short times. For d > 4, the integral is dominated by short 
times and 

The second factor goes to one for t l t ,  >> 1.  This means (compare with (24)), that 
once a magnetization is induced, i t  grows basically as if there were no external field, 
the growth 'by itself' being the important process. For d < 4 the situation is different: 
the integral is dominated by late times, which means the continued influence of h is 
the relevant driving force. In this case 

is proportional to t for t l t ,  >> 1. 
Figure 1 shows the numerical solution and the analytical solution (broken lines), 

for dimensions 1 < d < 5 ,  with m, = 0 and h = 0.01. The analytically calculated 
curves include the corrections to the leading behaviour, i.e. those terms in brackets in 
the above two equations. The analytical results, derived in the scaling regime, describe 
the full solution (which includes saturation effects) very well when m < 0.25. In the 
next section, equations (34) and (35) will be generalized to any value of n by using 
_I"._"_ rathor ~ i m n l o  " .... r.- r...II.-". nhueir.1 YL~Y...~.."". . r m m n n t a  

3. Finite n and the Landau-Ginzburg m o d e l  

3.1. The model 

For the n = m limit we have shown that the magnetization m(t)  is closely related 
to the correlation function with the initial condition C ( k ,  t). We now consider the 
number of components n to be finite and show that the basic result, i.e. the relation 
between m(t )  and C ( k , t ) ,  is unchanged. For this section i t  is convenient to use a 
'soft-spin' model, instead of the 'hard-spin' (or 'fixed-length spin') model used in the 
previous section. 

The dynamics of the soft-spin model are described by the time-dependent Landau- 
Ginzburg equation: 
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lrllti 

Figure 1. Time dependence of the magnetization m(t ) ,  plotted- Inm against hf, 
for the O(n) model with n = 00. The continuous curves were obtained by solving 
(28) numerically, with h = 0.01 and mg = 0, and substituting the solution into (29). 
The five curves represent (top to bottom) spatid dimensions d = 5, 4. 3, 2, 1. The 
broken curves are obtained from the corresponding solutions of the simpler equation 
(30), valid for m(t) < 1. 

For rfu = 1 and r i 03 the length of the order parameter is forced asymptotically 
to be 1 + 1 2  = n, and the hard-spin case is recovered. We expect both cases to be in 
the same universality class: for n - M it can be explicitly shown how the equation 
of motion (36) leads to  the fixed-length result. 

The reason we choose the soft-spin model is that, for finite n, Gaussian initial 
conditions do not satisfy the fixed-length condition exactly, which would introduce 
an additional technical problem. For the soft spins we are free to assume the simple 
Gaussian form: 

[Oi(k,O)l= fim06,,, (37) 

[di(k, 0)4>(-k, 0)I = A6i,j + “;Jr ,o .  

h i ( k , t )  = f ih(t)6, , ,  (39) 

(38) 

Additionally we want the external field to be 

.w‘.e:e N is the xn-be: of -pi-- i:: the syste-. The initia! p:epa:ation of the system 
is therefore basically the same as the one w e  have chosen for the hard-spin case. 

3.2. Diagrammatic analysts 

Equation ( 3 6 )  can be formally integrated to the following equation: 
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This integral equation gives rise to a graphical expansion in powers of U. Denoting 
the bare propagator exp[(r - k z ) ( t  - t’)] by  a straight line, the  initial condition by a 
cross, h( t )  by a dash, and -u/n by a dotted line, gives the graphical representation 
solution shown in figure 2. 

+ &  + w t..... 

Figure 2. Perturbation expansion for the orderparameter field in powers of the 
coupling comtmt U of the time-dependent Landau-Ginzburg equation. A continuous 
line represents the ‘bare’ response function exp(r- k2)t - t ‘ ,  a broken line the vertex 
U, a cross the initial condition and a short vertical line the extemal field h. Arrows 
indicate the direction of increasing time. 

It is useful to define the response function G ( k ,  t)  (the ‘response to the initial 
condition’), which is 

and independent of i. The response G,(k,t) for h = 0 and m, = 0 is written in 
terms of diagrams in figure 3, where the circle represents the second cumulant A of 
the initial condition, i ~ s  in (38). 

6 
Figure 3. Perturbation expamion for the response function G ( k ,  t).  A circle repre- 
sents the second cumulant A of the initial conditions. The other graph elements are 
explained in the caption to figure 2. 

For Gaussian initial conditions one can derive, using either integration by parts or 
diagrammatic expansion, the relation 
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where the subscript 0 again indicates h = 0 and m, = 0. 
We want to emphasize that the following results do not require any large-n ap- 

proximation; they are valid for all n. The price we have to pay is that G,(k,  t ) ,  m(t)  
and X cannot be calculated explicitly any more, but they can be related to each other. 

9.2.1. h( t )  = 0. We are interested in the average of the order parameter [&(O, t ) ]  = 
fim(t) (by symmetry, only the zero mode has a non-zero average). Figure 4 shows 
the graphical expansion. A square has been introduced as a new element, which 
symbolizes the initial magnetization a m , .  

A J Bray and J G Kissner 

Figure 4. 
represents tht initial value mo of m(t). 

Pmturhation expansion for the mean magnetisation m(t) .  A square 

If we now only keep terms linear in m,, we just recover the diagrams of G,(O,t) 
with an additional square attached to each diagram, which is 

(There is no quadratic term in m,, because [ # i ( O ,  t ) ]  is an odd function of ma.) Hence 
to first order in m,, m(t)  grows with the same exponent A as Go, i.e. m ( t )  - m, L(t )A.  

A word of caution is necessary as regards the interpretation of equation (44). It 
might he thought that it is sufficient to choose m, small enough in order to remain in 
the regime where (44) is valid. This is not true, however, because the higher powers of 
m, also have time-dependent coefficients. For t = 0 equation (44) is exact because all 
coefficients but the linear one vanish, but when m(t)  approaches its saturation value 
of unity, the higher order contributions cannot be neglected any more: the linear 
approximation breaks down no matter how small m, is chosen (the smaller m, is, 
however, the longer the linear approximation is valid). From the fixed-length spin 
calculation it can he seen that the saturation is approached exponentially as already 
discussed in [E]. 

3.2.2. h( t )  # 0. For definiteness we take m, = 0. For non-zero external field, m(t) is 
related to the more general response function G,(k,t,t,), defined by 
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This quantity was introduced in [4] as a response to  thermal fluctuations. For a general 
time-dependent external field, (45) implies (for m, = 0) 

m(t) = dtlG,(O,t , t ,)h(tl)  + O(h3).  (46) I' 
To determine the  form of G,(O, t , t , )  we consider the special case h ( t )  = m16(t - t , ) ,  
corresponding to  an external field pulse at time t,. Then (46) gives 

m(t)  = mlG,(O,t , t l)  + o(m?) t > t , .  (47) 

The idea is to  write down a scaling form for G,(O, t ,  t , ) ,  based on the idea that the 
magnetization induced by the pulse should subsequently grow as L ( t ) A ,  as discussed 
in the previous subsection. Furthermore, on scaling grounds we expect the depen- 
dence on L( t )  to  enter through the ratio L(t)!L(t,).  Therefore: if we know the value 
G,(O,t,+,t,) of the response function immediately after the pulse (which, from (47), 
is proportional to the magnetization induced by the pulse) we can write down the 
scaling form 

Go(o,t,t ,) = G o ( O , t , + , t i ) f  (L":t,:> - > t ,  (48) 

with f (1)  = 1 and f (z)  - zA for large I. However, integrating the Landau-Ginzburg 
equation 

awat = ( T  + v2)4 - ( u / n ) ( & ' ) d  + m,6(t - t l )  

G,(O,t ,+, t , )  = 1. (49) 

from t , -  to  t ,+ gives immediately m(tl+) = m,, i.e 

This last result, though exact, is also misleading and cannot be used directly in 
(48). The reason is that ,  in the soft-spin Landau-Ginzhurg theory, part of the effect 
of the field pulse is to  change the 'length' of the spins, i.e. the  system is driven away 
from the minima of the potential. Such length changes quickly relax away (on a 
timescale 1/2r, the relaxation time for 'longitudinal' fluctuations) after the pulse is 
switched off, leading to a rapid initial decrease, to a new quasi-equilibrium value, of 
the magnetization induced by the pulse, before the eventual slow increase in m(t)  
begins. The time t , +  in (48) should be chosen afler the rapid initial relaxation has 
occurred. 

To clarify this point, it is instructive to  consider the fixed-length spin model (6). 
T L:" "I ILC -_"^ ,,,Y,C ---" + h a  Y l l r  fiol,4 llL." 6- *" be a pLi!ae, k(z, t )  = rr.,5(t = t l ) ,  ir,teg:aticg [:om t,- 

to t , + ,  and defining m(t) as the volume average of S ( z , t ) ,  gives 

mi( t l+ )  = C(6ij - ( s i ( s , t , ) s j ( z , t l ) ) ) m , j  
I 

where the angle brackets indicate a volume average. Since the (unit-length) spins 
are isotropically distributed before the pulse is applied, this becomes m(t, )  = {(n - 
l ) /n)m,,  i.e. 
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Comparing (50) with (49) we see that ,  for soft spins, a fraction 1/n of the induced 
magnetization is associated with ‘spin stretching’, and the remainder with ‘spin rota- 
tion’. The difference between (49) and (50) will become qualitatively important for 
n = l .  

A J Bray and J G Kissner 

For n > 1, the above discussion leads to the scaling form 

with f(1) = 1 and f(z) - zA for z > 1. Using this in (46), with L(t)  - t’l’ and 
h(t,) = h = constant, and changing variables to y = t J t ,  gives 

n - 1  
n m(t) = - ht 1’ dyf (%) 

t o l t  

where we have once more introduced a iower cut-of? to  on the time integrai to represent 
the short-time limit of the scaling regime. Since f(z) - zA for large I, the integral 
will converge at  the lower limit if X < 2, to give m(t) - ht plus subdominant terms. 
For X > 2, on the other hand, the integral is dominated by the vicinity of the lower 
limit, and one obtains m(t)  - ht,(t/t,)A12 plus subdominant terms. These results 
generalize the large-n results obtained in section 2. Note that  both terms (in t and 
tA12) are present in general, but which one of them dominates for large t depends on 
the value of A.  In practice, one should include both terms in the fit, as is evident 
from a study of figure 1: there is no dramatic change of behaviour at d = 4 (which 
corresponds to X = 2 for n = w), but rather a smooth crossover as a function of d. 

The case n = 1, corresponding to a scalar order parameter, has to be considered 
separately. The domain state consists of a set of well-defined domains, in which 
the local order parameter is close to one of the two equilibrium values *(r/u)’/’, 
separated by narrow walls of width w - 1/&. When a magnetic field pulse is applied, 
the induced magnetization inside the domains quickly relaxes away when the field is 
switched off. The important effect of the field occurs a t  the domain walls, where it 
leads to a shift in the wall positions so as to increase the global magnetization. Shortly 
after the field has been switched off, the residual magnetization is proportional to the 
volume fraction occupied by the walls at time t , ,  which is of order w / L ( t , ) .  The 
analogue of equation (51) is 

Putting this in (46) (with h ( t )  = h = constant) gives, up to constants, 
.I 

m ( t )  = h - h i o ’ t ( d y / ~ ) ~ ( l / ~ ) .  (54) 

This time the integral converges at  t he  lower limit if X < 1 ,  to give m(t) - h d  
plus subdominant terms. For X > 1 the vicinity of the lower limit dominates and 
m(t) - ht,(t/t,)A12 is obtained. 

To conclude this section w e  note that it is simple to incorporate both a weak 
magnetic field h and a small initial magnetization m,, since the effects are additive to 
leading order in m, and h:  

m(t) = h(at2 + bt”’) + cm,tAlz (55) 
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where a, b and c are constants and I = 1 (?j) for a vector (scalar) order parameter. 
Note that the argumentsgiven above imply (i) a > 0 ,  b < 0 for A < A=,  (ii) a <'O, b > 0 
for A > A,, (iii) e > 0 always, where Ac = 2 for n > 1 and A, = 1 for n = 1. These 
results agree with the explicit results obtained for large n. For a system quenched 
from a high-temperature equilibrium state in a weak magnetic field, mo will itself be 
linear in h. 

4. S u m m a r y  

In section 2 the large-n limit was used to investigate the phase-ordering dynamics 
of a system quenched into the ordered phase under conditions corresponding t o  an 
off-critical quench, i.e. either the initial magnetization mo or the external field h (or 
both) is non-zero. One of the central results is that for h = 0 the time evolution of 
the magnetization m(t)  is governed by the same exponent X that  controls dynamic 
correlations during phase ordering, i.e. m(t)  - moL(t )A,  where L ( t )  - 1'1' is the 
characteristic length scale. This result is valid as long as m(t) a 1, i.e. the magneti- 
zation is small compared to its saturation value. (At general temperatures below T, 
one would require m(t)  to be much smaller than the equilibrium magnetization, which 
in general will be smaller than the saturation value, due to thermal fluctuations). In 
section 3 the rps~!t  %(i) -- moL,(t)A w s  tn fo!!~w ?cite gene& from the 
structure of the diagrammatic perturbation expansion for m(t). 

The second main result is a prediction for the behaviour of m(t)  when a weak 
external field is present. From the large-n calculation, and general scaling considera- 
tions, we expect a result of the form (55), containing two competing power laws. As 
well as an explicit term in tA la  multiplying the initial magnetization, there is another 
such term, linear in h,  which represents the magnetization induced by the magnetic 
field on short times. The remaining term, linear in both h and t (or &for n = l), is 
due to the continued effect of the field a t  late times. 

From an experimental viewpoint, m(t)  (or,  more generally, the mean order param- 
eter) is measureable in principle from the Bragg peak intensity (proportional to m(t)') 
in a scattering experiment. In the presence of a magnetic field (or, more generally, 
the field conjugate to the order parameter), there are two competing power laws. It 
is suggested that bcth o i  these be inciuded in fits of the data to (55). in conciusion 
we hope that the present paper will stimulate experimental attempts to measure the 
non-trivial exponent A.  
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Appendix .  Abel's equat ion  

We want to cast equation (28) into a standard differential equation, which will be 
Abel's equation, For convenience, let us choose m, = 0,  and for brevity define 
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Equation (28) then becomes 

A J Bray and J G Kissner 

with initial condition f (0)  = 0. For h(t) 2 0 and h(t) = 0 only for isolated points, we 
can redefine time by a one-to-one mapping: 

t 
r = dt'h(t') 

d r  - = h ( t ) ,  
dt 

The left-hand side of (A2) involves the derivative o f f  with respect to r :  

We introduce the functions 

f ' (4 = f(t(7)) 
d(r) = s ( t ( r ) ) .  

. .  
In this notation (A2) reads 

with the initial condition f ' ( 0 )  = 0. 
The next substitution to be applied is the introduction of u(r): 

f ' ( r )  = s '(r)sinhu(r).  (AS) 

With the trigonometric identity 1 + sinh' U(.) = cosh' U(.), (AB) then becomes 

The dot is now the derivative with respect to r. The initial condition transforms to 
u(0) = 0. Equation (A10) itself could be used as a starting point for approximations. 
With one last substitution 

w(7) = tanh U(.) ( A l l )  

we arrive at  Abel's equation: 
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and w(0) = 0. For further discussion of this nonlinear first-order differential equation 
see [lo]. 
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